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Real-Time Optimization is Pervasive in Energy : Estimation, Management, Control 
Requires Extreme-Scale NLP Solvers: Model Size and/or Short Time Scales 



Optimization Problem  
 
 
 
 Traditional : Solve to Given Accuracy (Neglect Dynamics) 

Real-Time :  Interrupt at Sufficient Descent  
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Solution forms Time-Moving and Non-Smooth Manifold 
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- Challenge is to Track Manifold Stably (Get Good Step with Minimum Latency) 
 
-  This requires NLP Solvers with the Following Features: 

1) Superlinear Convergence (Newton-Based) 
2) Scalable Step Computation (Enable Iterative Linear Algebra) 
3) Asymptotic Monotonicity of Minor Iterations (Makes Progress) 
4) Fast Active-Set Detection and Warm-Start 

 
 
 

 

 
 
 

 
- Existing Solvers (Interior-Point and SQP) Fail at Least One Feature  

 
 

 



Exact Differentiable Penalty Functions (EDPFs) 
Consider Transformation using Squared Slacks  

Equivalent To: 

Apply DiPillo and Grippo’s Penalty Function DiPillo,Grippo, 1979, Bertsekas, 1982 

Solve NLP Indirectly Through EDPF Problem: 



EDPF 

Advantages 
    - EDPF Differentiable Everywhere 
    - Unconstrained Problem with Box Constraints 
    - Makes Progress at Each Iteration 

Questions 
    - Under What Conditions Do Minimizers of EDPF and NLP Coincide? 
    - How to Deal with Nonconvexity? 
    - Detect and Exploit Negative Curvature 
    - Can We Enable Scalability? 
           - First and Second Derivatives 
           - Iterative Linear Algebra 



Derivatives and Minimizers of EDPF 

In Compact Form 

First  Derivative  

Is KKT Point of EDPF a KKT Point of NLP? 

Theorem:  
Under LICQ and SC there exist           such that KKT Point of EDPF is KKT point of NLP. 

Proof:  

Matrix on LHS is PD For sufficient large      and sufficiently small      . 
Note: Penalty parameters do not need to go to zero! 



High-Order Term Vanishes at KKT Point Because  

Second Derivative 

Third-Order Term 

Is Strict Minimizer of EDPF a Strict Minimizer of NLP? 

Theorem:  
 i)  If KKT Point satisfies SSOC for NLP then there exist           such that it  
     satisfies SSOC of EDPF.    
ii)  If KKT Point does not satisfy SSOC for NLP then there exist            such that this is 
not a strict local minimizer of EDPF.  
 
 Proof: Relies on Analysis of Projected Hessian where       is null-space matrix. 

Note: Negative Curvature Strong Far From Solution! 

Derivatives and Minimizers of EDPF 



A “Strong” Dennis-More Condition 

Implication:  
 
   - We Do NOT Need Third-Order Term to retain Superlinear Convergence 
   - However, Third-Order Derivatives Might Be Beneficial Early In Search 

Exact Hessian 

Approximate Hessian 

Approximate Hessian is Asymptotically Convergent 

Derivatives and Minimizers of EDPF 



Trust-Region Newton 

- Issue: Need to Detect and Exploit Directions of Negative Curvature 
 
- Use Trust-Region Newton Framework of Lin and More (TRON) 
 

      1) Determine Activity Using Cauchy Point 

    2) Compute Search Step by Solving Trust-Region QP :  
         Steihaug’s Preconditioned Conjugate Gradient  Approach (PCG) 

    3) Check Progress Over Cauchy Step and Update Trust Region Radius 

- Approach Converges to Strict Local Minimizers of NLP Globally and Superlinearly 
- Requires           to Satisfy Conditions of Previous Theorems 
 



Computational Scalability  
Derivatives 

- EDPF Hessian Can be Assembled using Hessian and Jacobian Vector Products 
 

Kernel 

Requires 2 Unique Kernels 

Conjugate Gradient 
 
 
 
 
       - Does Not Require Assembling Reduced Hessian 
       - Requires Action of Inverse Preconditioner  
       - Incomplete Cholesky, PARDISO, Multigrid 
       - Negative Curvature Detected Externally (Not by Linear Solver) 
 
 



Toy Problem – Algorithmic Behavior 

-  Trust Region Management Critical   
-  Line Search Solvers Fail (Range of Penalty Parameters Narrower) 

Min Eigenv. TR 



Predictive Control 

- Discretize and Scale Problem Up by Increasing Horizon N 
- Sparsity of  Augmented System Retained in Hessian of EDPF 
- Drop Tolerance Incomplete Cholesky of 1e-4  



Predictive Control - Scalability 

- Scalability of Full Cholesky Not Competitive 
- Incomplete Cholesky Gives High Flexibility 
    Can Specify Drop Tolerance to Reduce Latency 
- PCG Iterations Scale Well 
- Largest Problem : 250,000 Variables 

Incomplete Cholesky Full Cholesky 



Predictive Control – Active Sets 

- Case 1) 173 variables active at solution and initialized at point with 44  
 

- Case 2) 44 variables active at solution and initialized at point with 173 
 
- Cauchy Search Efficient at Detecting Activity (Allows for Large Changes Between Iterates) 
 

- Number of PCG Iterations Do Not Degrade as Solution Approaches (Compare with IP) 



Predictive Control – Early Termination 

- Run Problem Terminating After 2 Major Iterations and 20 PCG iterations 
- Reduced Latency by A Factor of 4 (Four)  
- Convergence to Equilibrium Point  (Warm-Starting Effective) 



Conclusions and Future Work 

- It is possible to derive NLP algorithms with? 
1) Superlinear Convergence (Newton-Based) 
2) Scalable Step Computation (Enable Iterative Linear Algebra) 
3) Asymptotic Monotonicity of Minor Iterations (Makes Progress) 
4) Active-Set Detection and Warm-Start 

- Critical in “Fast” Real-Time Environments 

- ToDo: 
- Connections with Other Penalty Methods (Augmented Lagrangians) 
- More Robust Implementation (Scaling, Trust-Region Update Rules, Ill-Conditioning) 
- Alternative Penalty Functions Requiring Only One Parameter 
- Preconditioning  
- Exploiting Special Structures 

- Proposed Approach : EDPF + Trust-Region Newton + PCG 
1) Newton-Based in Primal/Dual Space with Convergent Approximate Hessian 
2) Steihaug’s PCG to Detect and Exploit Negative Curvature 
3) PCG Improvement on EDPF Function 
4) Cauchy  
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